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A B S T R A C T

Auxetic materials with the counter-intuitive effect of negative Poisson’s ratio (NPR) have potentials for diverse
applications. Typical shape optimization designs of auxetic structures involve complicated sensitivity analysis
and a time-consuming iterative process, which is not beneficial for designing functionally-graded structures
where the auxetics at different locations need to be inversely designed. To improve the efficiency of the
inverse design and simplify the sensitivity analysis, we propose a deep-learning-based inverse shape design
approach for tetra-chiral auxetics. First, a non-uniform rational basis spline (NURBS)-based parameterization
of tetra-chiral structures is developed to create design samples and computational homogenization based on
isogeometric analysis is used in these samples to generate a database consisting of mechanical properties
and geometric parameters. Then, the database is utilized to train deep neural networks (DNN) to generate
a surrogate model that represents the effective mechanical properties as a function of geometric parameters.
Finally, the surrogate model is directly used in the inverse design framework where sensitivity analysis can
be calculated analytically. Numerical examples with verifications are presented to demonstrate the efficiency
and accuracy of the proposed design methodology.
1. Introduction

The positive Poisson’s ratio is the physical properties for most
materials in nature, following the rule that expanding when compressed
and shrinking when stretched. These materials are normally referred to
as conventional materials with Poisson’s ratio value ranging from 0 to
0.5 [1–3]. Based on classical elasticity theory, the available values of
Poisson’s ratio are from −1 to 0.5 for 3D isotropic materials and from
−1 to 1 for 2D isotropic systems with thermodynamic consideration of
strain energy [4]. Some special natural materials expand in the orthog-
onal direction when stretched and shrink when compressed, exhibiting
a negative Poisson’s ratio (NPR), such as crystalline materials [5,6],
rock with micro-cracks [7], cancellous bone [8] and cat skin [9,10].
This auxeticity behavior can also be achieved by engineering the archi-
tectured materials with auxetic units [11–14]. In 1985, Almgren [12]
designed a rod-hinge-spring structure to achieve auxetic behavior (𝜈 =
−1). In the same year, Kolpakov [11] presented a lattice structure with
re-entrant honeycomb features to obtain auxetic performances. The
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polymer foams with negative Poisson’s ratio were discovered later by
Lakes [15]. These pioneering works drew wide attention in academic
field to study the auxetics. The term auxetic in the scientific literature
was introduced by Evans [16] in 1991. One of the commonly-studied
architectured auxetics is the chiral auxetics, which has the significant
characteristic that does not superimpose with their mirror images.
The first isotropic 2D chiral molecular models (spontaneously forming
auxetic phases) were studied by Wojciechowski using computational
simulations [17] and analytic methods [18]. Then, Lakes et al. [19]
proposed a hexagonal honeycomb pattern consisting of central cir-
cles with tangentially attached ligaments to achieve the chirality. A
tetra-chiral auxetic system can even achieve auxetic, partially auxetic,
and nonauxetic behavior on the molecular level [20]. More research
about chiral-auxetic structures can be found in [21–23]. The auxeticity
achieved in chiral configuration is mainly based on the deformation
of rotating ligaments. In addition, the chiral structures allow unit cells
more easily to interlock under the condition of periodic boundary [24],
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have the resistance to disorder [25] and more robust performance
of auxeticity under manufacturing errors with both small and large
deformation [26].

Due to their auxeticity, auxetic structures exhibit various beneficial
phenomena, such as increasing indentation resistance and plane strain
fracture toughness, the enhancement of shear stiffness, and improve-
ment on the energy absorption properties [27,28], with applications
found in sports and textiles [29,30], aerospace industry [31] and
sensors or actuators [32].

Designing auxetic structures using numerical simulations has two
broad approaches. One is to design the structures based on an in-
depth understanding of the deformation mechanisms of certain types of
structures, such as structures with features of star-shaped [33,34], re-
entrant [35,36], chiral [19,37], star-shaped pores [38], rotating poly-
gons/polyhedrons [39,40] and those with buckling mechanisms [41–
43]. The details can be referred to recent works [13,14,44]. This cat-
egory needs to set a referenced configuration, through changing some
essential features of components to control the auxeticity. However, the
initial configurations generally rely on substantial prior knowledge of
experienced designers, limiting broad applications of auxetic materi-
als. The other is numerical optimization techniques, mainly based on
topology optimization [24,45–49], shape and size optimization [50–
53].

To achieve an integrated design, analysis and manufacturing sys-
tem, the isogeometric analysis (IGA) demonstrates a great flexibility
and potential in structure design optimization [54], which has triggered
renewed interests in designing auxetic lattices using shape and size
optimization [52,53,55,56].

Despite of the extraordinary advantages of designing the auxetic
lattices using isogeometric analysis, the challenge of performing highly
efficient sensitivity analyses remains to be an inevitable obstacle for
fast inverse design problems [53], which is not favored in design-
ing functionally-graded structures involving multi-scale inverse search
algorithms [57–59].

To improve the efficiency of the inverse design process of chiral
auxetics with target material properties, we utilize machine learning
approach to predict the properties of material and structures, such that
the time cost in the computational homogenization and the sensitivity
analysis can be significantly reduced. Predicting material properties
using machine learning has been widely used in literature, such as
neural networks for hyperelastic materials [60], convolutional neural
networks for composite [61], deep material networks for 2D and 3D
heterogeneous materials [62,63], clustering discretization methods for
heterogeneous materials [64] and generative adversarial networks for
architectured materials [65]. Recently, Wilt et al. [66] used deep
learning method to accelerate the auxetic design process, which can
bypass potentially complex hyperelastic analytical methods. Kollmann
et al. [67] proposed a deep-learning-based optimization for bulk modu-
lus, shear modulus, or Poisson’s ratio. Wang et al. [68] designed a novel
planar perforated auxetic metamaterial with orthogonally aligned oval
holes, which can be analyze by machine learning method effectively.

Applying machine learning to topology optimization problems has
also demonstrated certain potential, such as 3D topology optimiza-
tion [69], speeding up methods for topology optimization [70], near-
optimal topology optimization [71,72], moving morphable component-
based structure optimization [73], optimization under variable loading
configurations [74] and generative design [75]. As for shape optimiza-
tion, Wang et al. [76] presented a back-propagation neural network
to design auxetics. Compared with topology optimization, the number
of design variables in shape optimization is tiny, advantaging in fewer
training costs when combined with machine learning methods.

In this work, we seek to utilize deep learning (DL) techniques to
solve the integrated shape and size optimization design problems for
tetra-chiral auxetic structures, which has the following advantages:
2

• Effective computing. In most conventional designs, the mechan-
ical properties analysis mainly used homogenization method ac-
counting for huge computational resources. The DL can be uti-
lized to learn the homogenization calculation in numerical simu-
lation and fit a surrogate model to replace the homogenization
calculation, reducing computing time significantly, which is of
great interests for multi-scale inverse design problems that may
require different local designs at different locations [57,58,77,
78].

• Concise sensitivity analysis. The relationship between geometric
parameters and effective mechanical properties can be expressed
in an explicit function, which brings a fast, straightforward, and
analytical sensitivity analysis, which further speeds up the inverse
design efficiency.

Here, we propose a deep-learning-based isogeometric inverse design
for tetra-chiral auxetics. The framework of IGA enables a remarkable
advantage of geometry modeling such that using only a small num-
ber of design variables can describe the complex chiral structures in
a simple way. By introducing deep neural networks (DNN) to ana-
lyze massive simulation data of randomly generated configurations,
the highly non-linear relationship between geometric parameters and
effective mechanical properties can be expressed by an explicit analyti-
cal surrogate function, replacing the time-consuming homogenization
calculation. Subjected to an effective stiffness constraint, an inverse
design framework to achieve programmable auxetic designs with target
properties is developed, and the design limit under different stiffness
constraints is studied. Due to the IGA, the proposed method also
achieves an integration between design, analysis, and manufacture.

The paper is organized as follows: the framework of the isogeomet-
ric inverse design is elaborated in Section 2. The training process of
deep neural network is presented in Section 3. The results of numerical
inverse design and verification studies are discussed in Section 4.
Finally, some concluding remarks are provided in Section 5.

2. The framework of deep-learning-based isogeometric inverse
design

2.1. Isogeometric encoding scheme

The pattern of a tetra-chiral structure proposed in this work has
a core surrounded by four ligaments, the auxeticity and chirality are
shown in Fig. 1a,b. The core is parameterized with 5 × 5 control points
as a square, shown in Fig. 1c. A series of width parameters, 𝑤𝑖, with
= 1, 2, 3, 4, 5, and the offsetting parameters, 𝑜𝑖, with 𝑖 = 1, 2, 3, are
sed to characterize the ligaments, as shown in Fig. 1c. It is noted that
he width parameters represent the distance between the two boundary
ontrol points at different vertical locations; the offsetting parameters
epresent the offsetting value of the central control points from the
enterline at different vertical locations; and 𝑤1 = 2𝑑. To ensure the
eriodicity, the top boundary center of ligaments should be fixed on the
ertical centerline for tetra-chiral structures. The order of the NURBS
tilized here is 3 (corresponding to the degree of 2), the knot vectors
sed for all design parameterizations are the same, [0, 0, 0, 1/3, 2/3, 1,
, 1]. The additional parameter h in Fig. 1c denotes the ligament height
nd H equals to half of the unit side length. To obtain a full unit of
tetra-chiral structure, the four edges of the square core are aligned
ith four ligaments patterned in a circular fashion. The red part in
ig. 1c represents the minimum representative volume element (RVE)
ize of chiral structures. Given an RVE, imposing a macro strain with
eriodic boundary conditions on the structure, the effective mechanical
roperties can be calculated by using homogenization method detailed
n Section 2.2.

With above NURBS parameterization scheme, the tetra-chiral struc-
ures can be encoded by 8 design parameters, i.e., 𝝌 = [𝑤1, 𝑤2, 𝑤3, 𝑤4,
, 𝑜 , 𝑜 , 𝑜 ] including the size and shape parameters, leading to an
5 1 2 3
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Fig. 1. Illustrations of the tetra-chiral auxetics: (a) the auxetic property, (b) the chirality, and (c) isogeometric encoding schemes.
integrated shape and size design optimization. Some samples with
different encoding parameters are plotted in Fig. 2, which shows the
excellent flexibility and broad design freedom of the proposed isogeo-
metric encoding scheme. For simplicity, each RVE utilizes a dimension
of 20 × 20 with a Young’s modulus of 1 and a Poisson’s ratio of 0.3,
noting that the effective properties (e.g., the effective Young’s modulus
and Poisson’s ratio) are non-dimensional.

2.2. IGA-based homogenization method

Given an RVE defined in domain V with boundary S, as depicted in
Fig. 3, in which the base material occupied in sub-domain 𝛺(𝛺 ⊂ 𝑉 )
with boundary 𝛤 , imposing a macro strain 𝑬 with periodic boundary
conditions on the structure, a boundary value problem for sub-structure
can be described as
{

div𝝈 = div(C∇𝒖) = 𝟎 in 𝛺,
𝒖+ − 𝒖− = 𝑬

(

𝒙+ − 𝒙−
)

on 𝛤𝑢,
(1)

where 𝝈 is micro stress field, 𝒖 is the micro displacement field, 𝒙 is the
location vector with respect to the center of the RVE, ∇ is the gradient
operator, the symbols ‘+’ and ‘−’ denote the opposing sides of a RVE,
and C represents the elasticity tensor of the bulk material property. The
macro stress 𝛴 can be calculated by solving the above boundary value
problem using

𝛴 = 1
𝑉 ∫𝛺𝜏

𝜎d𝛺. (2)

The macro stress–strain relation for plane stress condition can be
written as

⎡

⎢

⎢

⎣

𝛴11
𝛴22
𝛴12

⎤

⎥

⎥

⎦

=
�̄�𝑌

1 − �̄�2

⎡

⎢

⎢

⎣

1 �̄� 0
�̄� 1 0
0 0 1−�̄�

2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐸11
𝐸22
2𝐸12

⎤

⎥

⎥

⎦

. (3)

where 𝐸𝑌 and �̄� are the effective Young’s modulus and Poisson’s ratio,
respectively.

Considering the case with a macro strain field of 𝑬 = [1, 0, 0]T, the
effective Poisson’s ratio can be evaluated after solving the boundary
value problem shown in Eq. (1) using

̄ =
𝛴22 =

∫𝛺𝜏 𝜎22 d𝛺
. (4)
3

𝛴11 ∫𝛺𝜏 𝜎11 d𝛺
and the effective Young’s modulus can be evaluated using

�̄�𝑌 = 𝛴11
(

1 − �̄�2
)

. (5)

In this work, the boundary value problem shown in Eq. (1) is solved
using isogeometric analysis that utilizes NURBS basis functions as the
shape functions.

For a NURBS curve with an order of p, n control points and a knot
vector 𝛯 =

[

𝜉1, 𝜉2,… , 𝜉𝑛+𝑝+1
]

, the weighted basis function correspond-
ing to each control point is expressed as

𝑁𝑖,𝑝(𝜉) =
𝐵𝑖,𝑝(𝜉)𝑤𝑖

∑𝑛
𝑗=1 𝐵𝑗,𝑝(𝜉)𝑤𝑗

, (6)

where the B-Spline basis 𝐵𝑖,𝑝(𝜉) are defined as

𝐵𝑖,0(𝜉) =
{

1, if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1,
0, otherwise ,

(7)

𝐵𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
𝐵𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝐵𝑖+1,𝑝−1(𝜉) if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1,

(8)

with the convention 0∕0 = 0. A 2D NURBS basis functions can be
constructed as

𝑁 𝑗,𝑞
𝑖,𝑝 (𝜉, 𝜂) = 𝑁𝑖,𝑝(𝜉)𝑁𝑗,𝑞(𝜂), (9)

where 𝑝 and 𝑞 denote the order in 𝜉 and 𝜂 direction, respectively. Ac-
cordingly, a generic variable x (e.g., coordinate, force, or displacement)
can be interpolated from the corresponding control variables 𝑥𝑖 with
parametric coordinate (𝜉 , 𝜂 ),

𝑥(𝜉, 𝜂) =
∑

𝑖
𝑁𝑖(𝜉, 𝜂)𝑥𝑖, (10)

For example, in a deformed geometry patch, the displacement field
u can similarly be interpolated as

𝒖 =
∑

𝑖
𝑁𝑖𝒖𝑖, (11)

where 𝒖𝑖 is the displacement value of the 𝑖th control point. Using this
interpretation in FEM, the stiffness matrix 𝑖𝑲 , unknown displacement
vector 𝑖𝑼 , and the corresponding load vector 𝑖𝑭 for the 𝑖th NURBS
patch can be obtained. By assembling them together with multiple
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Fig. 2. Examples for tetra-chiral designs with different encoding parameters.
Fig. 3. The RVE of a tetra-chiral auxetic structure.
points constraints (MPCs), a system of equations can be obtained as

[

𝑲 𝑨𝑇

𝑨 0

] [

𝑼
𝝀

]

=
[

𝑭
𝒃

]

, (12)

where 𝝀 are Lagrangian multipliers,

𝑲 =

⎡

⎢

⎢

⎢

⎢

⎣

1𝑲
2𝑲

⋯
𝑛𝑲

⎤

⎥

⎥

⎥

⎥

⎦

,𝑼 =

⎡

⎢

⎢

⎢

⎢

⎣

1𝑼
2𝑼
⋯
𝑛𝑼

⎤

⎥

⎥

⎥

⎥

⎦

, and 𝑭 =

⎡

⎢

⎢

⎢

⎢

⎣

1𝑭
2𝑭
⋯
𝑛𝑭

⎤

⎥

⎥

⎥

⎥

⎦

. (13)

2.3. DNN-based surrogate model

The calculation cost of extracting the effective properties of tetra-
chiral auxetics using IGA-based homogenization method can be cum-
bersome, and not favorable in designing variable auxeticity lattices
with different local cell performances [79–82]. To promote compu-
tational efficiency, a deep neural network is introduced here. As a
category of artificial neural network (ANN) [83] with multiple hiding
layers, deep neural networks (DNN) are able to find a relatively ac-
curate mathematical mapping from the input geometry parameters to
the output effective properties. In this work, due to the complicated
nonlinear relationship between the geometric parameters and effective
mechanical properties for the tetra-chiral structures, it is important
to use a proper deep learning structure to extract the complicated
underlying relation. Compared with the shallow network, more hiding
layers in DNN enables the composition of features from lower layers
and modeling complex data with potentially fewer neuron units [84].
4

Consider a DNN with 𝐿 layers, the input and output vectors in layer
𝑙 ∈ {1,… , 𝐿} are denoted 𝒛𝑙 and 𝒂𝑙, respectively. The weights and
biases from layer 𝑙−1 to 𝑙 are denoted 𝒘𝑙 and 𝒃𝑙, respectively. The feed-
forward operation of DNN can be constructed as (for 𝑙 ∈ {1,… , 𝐿 − 1}
and 𝑗 denote any neuron unit)

𝑧𝑙+1𝑗 = 𝒘𝑙+1
𝑗 𝒂𝑙 + 𝑏𝑙+1𝑗 ,

𝑎𝑙+1𝑗 = 𝜃
(

𝑧𝑙+1𝑗

)

,
(14)

where 𝜃 is activation function, representing hyperbolic tangent function
ε𝑡𝑎𝑛ℎε in this work. As design variables have been limited into 𝝌 =
[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑜1, 𝑜2, 𝑜3], the input layer is set to have 8 neurons
(𝒂1 = 𝝌 is the input). The effective properties are effective Poisson’s
ratio and Young’s modulus, leading to 2 output neurons (𝒂𝐿 is the
output). The DNN method in this work is a type of regression problem,
which means that the output layer do not need to activated, hence,
𝒂𝐿 = 𝒛𝐿. Eq. (14) can be rewritten in vector form as

𝒂𝑙+1 = 𝜃
(

𝒘𝑙+1𝒂𝑙 + 𝒃𝑙+1
)

. (15)

The function of total training error is set in a quadratic norm as

𝐶 = 1
2𝑛

∑

𝐱

‖

‖

‖

𝒚 − 𝒂𝐿‖‖
‖

2
, (16)

where 𝑛 denotes the total number of training examples, 𝒚 is the corre-
sponding desired output.

The sensitivity analysis of the training error is performed using a
back-propagation operation, which is simply to take the partial deriva-
tives of training error 𝐶 with respect to the weights 𝑤𝑖 and the biases
𝑏 .
𝑖
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For each training case, a error function 𝛿𝑙𝑗 of neuron 𝑗 in layer 𝑙 is
defined as

𝛿𝑙𝑗 =
𝜕𝐶
𝜕𝑧𝑙𝑗

, (17)

here 𝜹𝑙 represents the vector of errors associated with layer 𝑙. To
ompute 𝜹𝑙 for every layer, a recursive method is applied.

First, the output error 𝛿𝐿𝑗 in the output layer 𝐿 reads,

𝐿
𝑗 = 𝜕𝐶

𝜕𝑧𝐿𝑗
=
∑

𝑘

𝜕𝐶
𝜕𝑎𝐿𝑘

𝜕𝑎𝐿𝑘
𝜕𝑧𝐿𝑗

. (18)

Note that the output activation 𝑎𝐿𝑘 of the 𝑘th neuron is only determined
y the weighted input 𝑧𝐿𝑘 of the 𝑘th neuron. Hence, 𝜕𝑎𝐿𝑘 ∕𝜕𝑧

𝐿
𝑗 = 0 when

𝑘 ≠ 𝑗. Recalling 𝑎𝐿𝑗 = 𝑧𝐿𝑗 , Eq. (18) can be simplified as

𝛿𝐿𝑗 = 𝜕𝐶
𝜕𝑎𝐿𝑗

𝜕𝑎𝐿𝑗
𝜕𝑧𝐿𝑗

= 𝜕𝐶
𝜕𝑎𝐿𝑗

, (19)

which can be written in a vector form as

𝜹𝐿 = ∇𝑎𝐶. (20)

Then, the error 𝛿𝑙𝑗 can be represented in terms of the error of the
next layer 𝛿𝑙+1𝑗

𝛿𝑙𝑗 =
𝜕𝐶
𝜕𝑧𝑙𝑗

=
∑

𝑘

𝜕𝐶
𝜕𝑧𝑙+1𝑘

𝜕𝑧𝑙+1𝑘

𝜕𝑧𝑙𝑗
=
∑

𝑘

𝜕𝑧𝑙+1𝑘

𝜕𝑧𝑙𝑗
𝛿𝑙+1𝑘 . (21)

Note that

𝑧𝑙+1𝑘 =
∑

𝑗
𝑤𝑙+1

𝑗𝑘 𝑎𝑙𝑗 + 𝑏𝑙+1𝑘 =
∑

𝑗
𝑤𝑙+1

𝑗𝑘 𝜃
(

𝑧𝑙𝑗
)

+ 𝑏𝑙+1𝑘 , (22)

where 𝑤𝑙+1
𝑗𝑘 is the weight from the 𝑗th neuron in the 𝑙th layer to the 𝑘th

neuron in the (𝑙 + 1)th layer. Differentiating Eq. (22)

𝜕𝑧𝑙+1𝑘

𝜕𝑧𝑙𝑗
= 𝑤𝑙+1

𝑗𝑘 𝜃′
(

𝑧𝑙𝑗
)

, (23)

nd substituting Eq. (23) to Eq. (21), the recursion relationship is
btained as
𝑙
𝑗 =

∑

𝑘
𝑤𝑙+1

𝑗𝑘 𝛿𝑙+1𝑘 𝜃′
(

𝑧𝑙𝑗
)

, (24)

hich can be written in a vector form as
𝑙 =

(

(

𝒘𝑙+1)𝑇 𝜹𝑙+1
)

⊙ 𝜃′
(

𝒛𝑙
)

, (25)

ith ⊙ as the Hadamard product. Obviously, the gradient can be
xpressed as
𝜕𝐶
𝜕𝑏𝑙𝑗

= 𝛿𝑙𝑗 .

𝜕𝐶
𝜕𝑤𝑙

𝑘𝑗

= 𝑎𝑙−1𝑘 𝛿𝑙𝑗 .
(26)

In the training process, the weights and the biases are updated using
the following rules

𝒘𝑙 → 𝒘𝑙 −
𝜂
𝑚

∑

𝜒
𝜹𝑙

(

𝒂𝑙−1
)𝑇 ,

𝒃𝑙 → 𝒃𝑙 − 𝜂
𝑚

∑

𝜒
𝜹𝑙 ,

(27)

here 𝜂 is learning rate and m is the number of training examples in a
ini-batch.

The details of the DNN training are presented in Section 3. With a
uccessful DNN training process, a DNN-based surrogate model (DSM)
an be established to form a mapping between the geometry variables
and the effective properties Y , described as follows,
For each 𝑙 = 2, 3,… , 𝐿 − 1 compute sequentially

𝒛𝑙 = 𝒘𝑙𝒂𝑙−1 + 𝒃𝑙 ,
𝑙 𝑙 (28)
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𝒂 = 𝑡𝑎𝑛ℎ(𝒛 ),
nd in the output layer 𝐿,
𝐿 = 𝒛𝐿 = 𝒘𝐿𝒂𝐿−1 + 𝒃𝐿, (29)

here 𝒂1 = 𝝌 and 𝒂𝐿 = 𝒀 (in which 𝑌1 denotes effective Poisson’s ratio,
nd 𝑌2 denotes effective Young’s modulus), all the weights and biases
ave been obtained via training previous.

.4. Inverse design framework

Henceforth, a trained DSM replaces the complicated IGA-based com-
utation homogenization and constructs an explicit function between
eometric parameters and mechanical properties. Such a surrogate
odel not only facilitates the auxetic design to achieve NPR properties

ut also enables a fast, simple and straightforward design sensitivity
nalysis.

The inverse design optimization problem is to optimize a given
etra-chiral auxetic to achieve target Poisson’s ratio with a restriction
t a required stiffness, i.e.,

in 𝛷[𝝌] ∶= (�̄� − ̌̄𝑣)2 (30)

ubjected to

𝛹𝑌 [𝝌] ∶= �̄�𝑌 − ̌̄𝐸𝑌 = 0
𝜒𝑖 ∈

[

𝜒
𝑖
, �̄�𝑖

]

, 𝑖 = 1, 2,… , 8
(31)

where 𝛷[𝝌] is the cost function, ̆̄𝑣 is the target effective Poisson’s ratio,
�̄�𝑌 is the required effective Young’s modulus, 𝜒

𝑖
and �̄�𝑖 are the lower

nd upper bounds of 𝜒𝑖, respectively. To guarantee the optimal designs
re meaningful and feasible, the lower and upper bounds are set as
= [0.1 0.1 0.1 0.1 0.1 0 0 0] and �̄� = [5 5 5 5 5 5 5 5], respectively. A unit

cell for the tetra-chiral structure has an area of 400, the initial design
parameters is [1 1 1 1 1 0.1 0.1 0.1], which has an effective Poisson’s
ratio �̄� = −0.0047 and an effective Young’s modulus �̄�𝑌 = 4.88×10−2𝐸𝑌

0 ,
with 𝐸𝑌

0 denoting the Young’s modulus of the base material.
The sensitivity analysis is represented as follows,

�̇� = 𝐷𝛷
𝐷𝜒𝑖

= 2(�̄� − ̆̄𝑣) ̇̄𝑣, (32)

where the dot over a variable denotes the material (design) derivative
or full derivative. The gradient the effective Poisson’s ratio ̇̄𝑣 (corre-
sponding to a output neuron) with respect to the geometric parameters
(the input neurons) can be obtained by

̇̄𝑣 =
𝜕𝑌1
𝜕𝜒𝑖

. (33)

Similar to the approach used in the back-propagation in training
he DNN, the gradient in Eq. (33) can also be calculated from layer 𝐿

to layer 1. First, a recursive parameter 𝝐𝑙 = 𝜕𝑌1∕𝜕𝐳𝑙 is defined. In the
output layer, the original value of 𝝐𝑙 is 𝝐𝐿, which can be calculate by

𝜖𝐿 = 𝜕𝑌1∕𝜕𝑧𝐿1 = 1. (34)

Then, the values of 𝝐𝑙 for all layers can be calculated recursively
using

𝝐𝑙 =
(

(

𝒘𝑙+1)𝑇 𝝐𝑙+1
)

⊙ 𝜃′
(

𝒛𝑙
)

. (35)

When 𝑙 = 2,

𝒛2 = 𝒘2𝒂1 + 𝒃2. (36)

Note that 𝒂1 = 𝝌 , we have
𝜕𝑌1
𝜕𝝌

=
𝜕𝑌1
𝜕𝒛2

𝜕𝒛2

𝜕𝒂1
=
(

𝒘2)𝑇 𝝐2. (37)

Henceforth, the derivative of effective Poisson ratio for 𝑖th input
parameter is

̇̄𝑣 =
𝜕𝑌1 =

∑

𝑤2
𝑘𝑖𝜖

2
𝑘. (38)
𝜕𝜒𝑖 𝑘
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Such explicit DSM allows an effective analytical derivation of the
gradient that is difficult to achieve using IGA-based homogenization
approach even with semi-analytical approach [53], and promotes the
computing efficiency in optimization process significantly.

Based on the inverse design framework, the programmable designs
with target properties and design limit exploration can be achieved. The
flowchart of DSM-based inverse design framework is shown in Fig. 4.

3. The training process of deep neural network

The deep neural network (DNN) used in this work includes 7 layers,
with an input layer consisting of 8 neurons (corresponding to the
geometric parameter of tetra-chiral structure), 5 hidden layers, and an
output layer consisting of 2 neurons (corresponding to the effective
Poisson’s ratio and Young’s modulus). The parameters of DNN structure
is 8-32-32-32-32-16-2, shown in Fig. 5a, in which each parameter
denotes the number of neurons in the corresponding layer. It is noted
that the DNN structure was chosen based on vast tests by balancing the
training efficiency and accuracy. The training process and all numerical
experiments were performed on a desktop computer with a GPU of
NVIDIA GeForce GTX 1080, a CPU of Intel core i7-6700K, and a
software environment of Matlab and TensorFlow.

Datasets are essential in a DNN training process and determine
the upper limit of learning accuracy. In this work, three types of
datasets (training set, validation set, and test set) were generated
randomly using IGA-based homogenization. The training and validation
sets were used in the training process of deep neural networks, while
the test set is utilized to verify the accuracy of DSM. The sample
numbers of the training, validation and test sets were 7000, 3000, and
500, respectively. It should be noted that all datasets have a similar
distribution.

The offline computational cost for achieving the DSM on the above-
mentioned computer is relatively cheap. The DNN training time takes
approximately 15 min with the structure 8-32-32-32-32-16-2, while
the training database costs around 90 min to generate 10000 random
samples. The inverse design approach using DSM-based approach saves
time in response evaluation and sensitivity analysis:

• The IGA-based homogenization normally takes a few seconds for
one evaluation, while the DSM model outputs the results almost
instantaneously.

• The IGA-homogenization-based inverse design approach uses fi-
nite difference to compute the sensitivity, which needs to run 8
simulations to obtain the gradient for the 7 design variables, while
for the DSM-based approach, the analytical sensitivity analysis
can be directly computed using the chain rule, with no simulation
required.

The iterative history of the fitting error (defined in Eq. (16)) was
lotted in Fig. 5b with an iteration number larger than 8000. The
itting errors for the training and validation sets dropped simultane-
usly during the iteration and converge at 0.000327 and 0.000589,
espectively.

The test set including 500 random samples was applied to demon-
trate the accuracy of DSM, in which the values obtained by homoge-
ization and trained DSM were compared by histograms in Fig. 6a. It is
lear that the data distributions of homogenization and DSM are simi-
ar, which proves the accuracy of DSM. The results obtained by trained
SM in the test set were validated using IGA-based homogenization
ethod, as shown in Fig. 6b with the distribution of relative errors. It

s noted that relative error is defined as

𝐸 = |

𝑌𝑖 − 𝑎𝐿𝑖
𝑌𝑖

|, (39)

here 𝑌𝑖 is the effective mechanical property obtained by IGA-based
omogenization approach, 𝑎𝐿𝑖 is the corresponding value calculated by
SM, 𝑖 = 1 denotes effective Poisson’s ratio and 𝑖 = 2 denotes effective
6

Young modulus. The average relative errors of the Poisson’s ratio and
Young’s modulus are 0.038 and 0.008, respectively. As Fig. 6b showed,
most samples locate within the area of tiny relative error, and the
trained results of Young’s modulus have better accuracy than that of the
Poisson’s ratio. The higher relative errors for the cases with Poisson’s
ratios close to 0 are mainly due to the fact that a smaller denominator
of 𝑌𝑖 is prone to induce larger errors.

4. Results

4.1. Programmable designs with target properties

The DSM-based inverse design framework presented above can
achieve programmable designs with target properties. To demonstrate
its capability, three design study cases with the target effective Pois-
son’s ratios of (i) ̆̄𝑣 = −0.5, (ii) ̆̄𝑣 = −0.3, and (iii) ̆̄𝑣 = 0, respectively,
subjected to a Young’s modulus constraint of �̄�𝑌 = 5.0 × 10−2 𝐸𝑌

0 ,
are performed, and the optimized structures are shown in Fig. 7a and
the optimized design variables are list in Appendix. The optimized
solutions are further evaluated using the IGA-based homogenization
method, which shows a good match towards the target properties.
The target and constraints can be changed accordingly to achieve
designs with programmable effective properties, which is essential for
programming lattice structures with variable auxeticities [55].

In order to compare the optimization efficiency of DSM-based and
homogenization-based approaches, the converging history of the first
10 steps with the same optimizer setting and the same target Poisson’s
ratio of ̆̄𝑣 = 0 are depicted in Fig. 7b. The corresponding average
computing time per step are 0.13 s and 5.29 s, respectively, demonstrat-
ing the high efficiency of the DSM-based approach. More importantly,
the DSM-based approach also demonstrates a faster and smoother
convergence. This significantly improves the efficiency of the inverse
design process.

4.2. Design limit graphs

To explore the limits of programmable design over a range of
stiffness constraints considering the lowest Poisson’s ratio attainable
(the lowest achievable Poisson’s ratio at a given stiffness constraint),
the target effective Poisson ratio ̆̄𝑣 was set as −1. The design limit
optimization was implemented sequentially over a range of �̄�𝑌 values
for tetra-chiral auxetics. To demonstrate the efficiency and accuracy of
proposed method, we compared the design limit curves obtained by
conventional homogenization-based and DSM-based approaches, with
the same stiffness restrictions from �̄�𝑌 = 5 × 10−5𝐸𝑌

0 to 1 × 10−1𝐸𝑌
0 .

It is noted here that the homogenization-based approach utilizes finite
difference method for design sensitivity analysis, while the DSM-based
approach adopts a fully analytical approach. All the optimized param-
eter sets are re-evaluated using IGA-based homogenization to verify
the feasibility. In Fig. 7c, the optimal results of the two categories are
plotted along the design limit curves, and the corresponding optimized
parameters for the solutions shown in Fig. 7c are listed in Appendix.

Note that the size of the ligaments gradually enlarges as stiffness
constraint increases, indicating that large-size ligaments are benefi-
cial to ensure the stiffness. Meanwhile the connection sizes (𝑤2, 𝑤3)
etween core and ligaments are small to keep higher flexibility of
otations that promotes the auxeticity. From the design limit curves, it
s clear that the DSM-based approach can achieve the same accuracy as
he conventional homogenization approach, and possibly, can achieve
ven better results for some cases, possibly due to a more accurate
ensitivity analysis.

In the interval [10−6, 10−3] of the stiffness constraints, the limit curve
sing DSM-based approach is very close to the one using homogeniza-
ion, with small differences of about ±0.01. In the interval [10−3, 10−1],
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Fig. 4. The flowchart of the inverse design framework using DNN-based surrogate model.
Fig. 5. DNN training: (a) the DNN structure and (b) the iteration history of fitting error.
the limit curve using DSM-based approach is better than that using
homogenization-based approach, with a maximum improvement of
−0.057 for the NPR. This is because the conventional homogenization-
based approach may fall in local optimal results due to the limitations
of finite difference sensitivity analysis, while the DNN approach with
analytical sensitivity may provide a better search direction to achieve
better results. However, in the interval [10−6, 10−3], the points of DSM-
based approach do not fulfill stiffness constraints perfectly, which may
be caused by insufficient samples of training data in such region.
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4.3. Verification

To verify the auxeticity of the tetra-chiral structures achieved using
DSM-based inverse design approach, a configuration of specimen was
chosen from the DSM-based design in Fig. 7c with a designed effective
Poisson’s ratio of −0.847. The sample geometry generated using the
DSM-based inverse design approach with a NURBS description was
imported into ABAQUS (Version 2018) for analysis. The simulations in
ABAQUS are performed with three different conditions: (i) compression



Composite Structures 280 (2022) 114808Z. Liao et al.
Fig. 6. Test set validation. (a) The data distributions comparison between homogenization and DSM values for test set. (b) The relative error distributions of DSM for test set (the
area of rectangles represents the percentages of corresponding intervals).
up to −10% strain rate with a geometry nonlinear solver to evaluate the
auxeticity under different compression strains, (ii) tension simulation
with a linear solver to verify the effective Poisson’s ratio under small
deformation, and (iii) tension up to 10% strain rate with a geometry
nonlinear solver to investigate the auxeticity variation under different
tension strains. The simulation results are depicted in Fig. 8. It shows
that for the chosen sample, the auxeticity in the simulated strain range
increases under compression and decreases under tension, which is
similar to the findings revealed in [85]. The linear simulation with
an effective Poisson’s ratio of −0.842 matches the DSM-based result
very well, indicating the accuracy of the proposed DSM-based design
approach.

5. Conclusion

In this work, we propose a deep-learning-based isogeometric in-
verse design framework for tetra-chiral auxetics, which is effective,
systematic, and efficient. The DNN are trained utilizing the simula-
tion database generated from an IGA-based homogenization of tetra-
chiral auxetics with randomly distributed geometry parameters, which
eventually forms an explicit DNN-based surrogate model (DSM) that
provides a mapping from the geometric parameters to the effective
properties. With this DSM, programmable auxetic designs with target
properties can be achieved in an inverse design framework befitting
from the high efficiency and the analytical sensitivity analysis of the
DSM. Numerical studies are performed to verify the optimized solu-
tions, demonstrating the availability, flexibility, and efficiency of the
proposed design framework. It should be noted that the proposed
method takes extra time for DNN training, however, the training pro-
cess can be done offline and does not affect the efficiency of the
inverse design approach. This work not only presents a novel method
that harnesses simulated data and machine learning to design tetra-
chiral auxetics but also can be potentially extended to multi-materials
auxetics and other metamaterial designs, e.g. lattice materials [86,87],
8

acoustic materials [88,89] and other metamaterials [90–92]. Moreover,
the concept in this work also indicates that a complicated physical
mechanism can be expressed explicitly by machine learning meth-
ods, which bring significant benefits to tackle various inverse design
problems in structures and materials, such as effective mechanical
calculation, fast sensitive analysis and efficient optimization capability.
Future work will be focused on fast-calculation methods for possi-
ble improved efficiency [93,94] and functionally graded structures
design [55].
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Fig. 7. Numerical study. (a) Programmable auxeticity designs with different target Poisson’s ratios of (i) ̆̄𝑣 = −0.5, (ii) ̆̄𝑣 = −0.3, and (iii) ̆̄𝑣 = 0. (b) The converged history of
DSM-based and homogenization-based approaches. (c) Design bounding graphs of the minimum achievable Poisson’s ratio for the tetra-chiral auxetic structures.
Fig. 8. Numerical verification in ABAQUS. For the chosen sample, the auxeticity in the simulated strain range increases under compression and decreases under tension. The linear
simulation with an effective Poisson’s ratio of −0.842 matches the DSM-based result very well.
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Table A.1
The optimal design parameters of each optimized solution in Fig. 7a.
Cases Design variables Young’s modulus Poisson’s ratios

i [4.67 2.98 2.97 3.59 1.47 2.88 2.38 0.60] 0.05 −0.49
ii [2.61 2.50 2.82 3.44 1.16 1.14 2.40 1.40] 0.05 −0.30
iii [0.55 3.66 4.17 3.58 1.02 0.07 2.64 1.26] 0.06 −0.00
Table A.2
The design variables of optimized structures obtained by homogenization-based optimization methods in Fig. 7c (the red
configurations from left to right).
Cases Design variables Young’s modulus Poisson’s ratios

a [1.53, 0.10, 0.10, 0.10, 0.10, 3.28, 2.85, 1.54] 5e−06 −0.998
b [1.32, 0.10, 0.10, 0.10, 0.10, 2.21, 1.97, 1.05] 1e−05 −0.997
c [1.50, 0.10, 0.10, 0.18, 0.56, 1.29, 1.19, 0.70] 5e−05 −0.991
d [1.53, 0.21, 0.11, 0.15, 0.60, 1.34, 1.14, 0.55] 1e−04 −0.988
e [1.60, 0.31, 0.31, 0.10, 0.68, 1.23, 1.09, 0.44] 5e−04 −0.965
f [1.65, 0.33, 0.32, 0.28, 0.77, 1.15, 0.10, 0.38] 1e−03 −0.943
g [2.83, 0.36, 0.22, 1.48, 1.21, 0.92, 0.55, 0.07] 5e−03 −0.867
h [3.42, 0.19, 0.38, 2.17, 1.62, 0.74, 0.55, 0.18] 0.01 −0.790
i [5.00, 1.67, 2.65, 4.50, 3.75, 2.63, 1.83, 0.65] 0.05 −0.570
Table A.3
The design variables of optimized structures obtained by DSM-based optimization method in Fig. 7c (the blue configurations
from left to right).
Cases Design variables Young’s modulus Poisson’s ratios

a [2.34, 0.10, 0.14, 0.10, 0.11, 4.57, 4.94, 3.29] 7.08e−06 −0.990
b [2.24, 0.10, 0.29, 0.10, 0.35, 3.62, 4.24, 2.21] 1.55e−05 −0.986
c [1.65, 0.10, 0.18, 0.10, 0.78, 2.50, 2.24, 1.29] 4.63e−05 −0.990
d [1.53, 0.10, 0.22, 0.10, 0.83, 2.30, 1.88, 1.18] 1.16e−04 −0.980
e [1.48, 0.22, 0.48, 0.17, 0.88, 2.09, 1.63, 0.98] 4.89e−04 −0.957
f [2.39, 0.15, 0.63, 0.96, 1.05, 2.37, 2.37, 0.40] 1.00e−03 −0.947
g [5.00, 1.14, 0.90, 3.32, 2.02, 3.26, 2.74, 0.25] 4.80e−03 −0.905
h [5.00, 1.04, 1.27, 3.91, 2.32, 3.06, 2.35, 0.25] 0.01 −0.847
i [5.00, 0.89, 2.94, 5.00, 5.00, 2.21, 1.96, 0.00] 0.05 −0.598
Appendix. Optimized parameters of the solutions in Fig. 7.

See Tables A.1–A.3.
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